Add like
Add dislike
Add to saved papers

Generating PET scan patterns in Alzheimer's by a mathematical model.

Alzheimer disease (AD) is the most common form of dementia. The cause of the disease is unknown, and it has no cure. Symptoms include cognitive decline, memory loss, and impairment of daily functioning. The pathological hallmarks of the disease are aggregation of plaques of amyloid-β (Aβ) and neurofibrillary tangles of tau proteins (τ), which can be detected in PET scans of the brain. The disease can remain asymptomatic for decades, while the densities of Aβ and τ continue to grow. Inflammation is considered an early event that drives the disease. In this paper, we develop a mathematical model that can produce simulated patterns of (Aβ,τ) seen in PET scans of AD patients. The model is based on the assumption that early inflammations, R and [Formula: see text], drive the growth of Aβ and τ, respectively. Recently approved drugs can slow the progression of AD in patients, provided treatment begins early, before significant damage to the brain has occurred. In line with current longitudinal studies, we used the model to demonstrate how to assess the efficacy of such drugs when given years before the disease becomes symptomatic.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app