Add like
Add dislike
Add to saved papers

Improving antifouling performance of FO membrane by surface immobilization of silver nanoparticles based on a tannic acid: diethylenetriamine precursor layer for municipal wastewater treatment.

In this study, a facile method for multifunctional surface modification on forward osmosis (FO) membrane was constructed by surface immobilization of AgNPs based on tannic acid (TA)/diethylenetriamine (DETA) precursor layer. The cellulose triacetate (CTA) FO membranes modified by TA and DETA with different co-deposition time (6 h, 12 h, 24 h) were investigated. Results indicated that the TA/DETA (24)-Ag CTA membrane with a TA/DETA co-deposition time of 24 h was identified to be optimal, which attained more hydrophilic. And it had the bacterial mortality of Escherichia coli and Staphylococcus aureus reaching 98.23% and 99.83% respectively and possessed excellent physical and chemical binding stability. Meanwhile, the coating layer resulted in the antifouling ability without damaging the membrane intrinsic transport characteristics. As for synthetic municipal wastewater treatment, the water flux of CTA FO membrane decreased approximately 49% of the initial flux after running for 14 days. In contrast, the flux decline rate of TA/DETA (24)-Ag CTA membrane was about 37%. Furthermore, less foulant deposition and higher recovery rate of water flux was observed for TA/DETA (24)-Ag CTA membrane, implying that the modified membrane effectively alleviated membrane fouling and processed a lower flux decline during municipal wastewater treatment. It was attributed to the enhanced surface hydrophilicity and antibacterial property of the coating layer, which improved antifouling property.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app