Add like
Add dislike
Add to saved papers

Towards an optimal design of a functionally graded porous uncemented acetabular component using genetic algorithm.

Generation of polyethylene wear debris and peri‑prosthetic bone resorption have been identified as potential causes of acetabular component loosening in Total Hip Arthroplasty. This study was aimed at optimization of a functionally graded porous acetabular component to minimize peri‑prosthetic bone resorption and polyethylene liner wear. Porosity levels (porosity values at acetabular rim, and dome) and functional gradation exponents (radial and polar) were considered as the design parameters. The relationship between porosity and elastic properties were obtained from numerical homogenization. The multi-objective optimization was carried out using a non-dominated sorting genetic algorithm integrated with finite element analysis of the hemipelvises subject to various loading conditions of common daily activities. The optimal functionally graded porous designs (OFGPs -1, -2, -3, -4, -5) exhibited less strain-shielding in cancellous bone compared to solid metal-backing. Maximum bone-implant interfacial micromotions (63-68 μm) for OFGPs were found to be close to that of solid metal-backing (66 μm), which might facilitate bone ingrowth. However, OFGPs exhibited an increase in volumetric wear (3-10 %) compared to solid metal-backing. The objective functions were found to be more sensitive to changes in polar gradation exponent than radial gradation exponent, based on the Sobol' method. Considering the common failure mechanisms, OFGP-1, having highly porous acetabular rim and less porous dome, appears to be a better alternative to the solid metal-backing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app