Add like
Add dislike
Add to saved papers

A dual-signal output electrochemical aptasensor for glypican-3 ultrasensitive detection based on reduced graphene oxide-cuprous oxide nanozyme catalytic amplification strategy.

Bioelectrochemistry 2024 April 14
Glypican-3 (GPC3) is an essential reference target for hepatocellular carcinoma detection, follow-up and prediction. Herein, a dual-signal electrochemical aptasensor based on reduced graphene oxide-cuprous oxide (RGO-Cu2 O) nanozyme was developed for GPC3 detection. The RGO-Cu2 O nanoenzyme displayed excellent electron transport effect, large specific surface area and outstanding peroxidase-like ability. The differential pulse voltammetry (DPV) signal of Cu2 O oxidation fraction and the chronoamperometry (i-t) signal of H2 O2 decomposition catalyzed by RGO-Cu2 O nanozyme were used as dual-signal detection. Under optimal conditions, the log-linear response ranges were 0.1 to 500.0 ng/mL with the limit of detection 0.064 ng/mL for DPV technique, and 0.1-50.0 ng/mL for i-t technique (detection limit of 0.0177 ng/mL). The electrochemical aptasensor has remarkably analytical performance with wide response range, low detection limit, excellent repeatability and specificity, good recovery in human serum samples. The two output signals of one sample achieve self-calibration of the results, effectively avoiding the occurrence of possible leakage and misdiagnosis of a single detection signal, suggesting that it will be a promising method in the early biomarker detection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app