Add like
Add dislike
Add to saved papers

Maitake Beta-Glucan Enhances the Therapeutic Effect of Trastuzumab via Antibody-Dependent Cellular Cytotoxicity and Complement-Dependent Cytotoxicity.

Trastuzumab, an anti-HER2 monoclonal antibody, is the mainstay treatment for of HER2-positive breast cancer. However, trastuzumab resistance is often observed during treatment. Therefore, new therapeutic strategies are needed to enhance the clinical benefits of trastuzumab. Maitake β-glucan MD-Fraction, isolated from Grifola frondosa, inhibits tumor growth by enhancing immune responses. In this study, we examined the effect of MD-Fraction on trastuzumab treatment of HER2-positive breast cancer. MD-Fraction did not directly inhibit the survival of HER2-positive breast cancer cells, alone or in the presence of trastuzumab in vitro. In HER2-positive xenograft models, the combination of MD-Fraction and trastuzumab was more effective than trastuzumab alone. Peripheral blood lymphocytes and splenic natural killer cells isolated from BALB/c nu/nu mice treated with MD-Fraction showed enhanced trastuzumab-induced antibody-dependent cellular cytotoxicity (ADCC) ex vivo. MD-Fraction-treated macrophages and neutrophils did not show enhanced trastuzumab cytotoxicity in the presence of heat-inactivated serum, but they showed enhanced cytotoxicity in the presence of native serum. These results suggest that MD-Fraction-treated macrophages and neutrophils enhance trastuzumab-induced complement-dependent cellular cytotoxicity (CDCC). Treatment of HER2-positive breast cancer cells with MD-Fraction in the presence of trastuzumab and native serum increased C3a release and tumor cell lysis in a dose-dependent manner, indicating that MD-Fraction enhanced trastuzumab-induced complement-dependent cytotoxicity (CDC) by activating the complement system. This study demonstrates that the combination of trastuzumab and MD-Fraction exerts a greater antitumor effect than trastuzumab alone by enhancing ADCC, CDCC, and CDC in HER2-positive breast cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app