Add like
Add dislike
Add to saved papers

Prediction of Cr(VI) and As(V) adsorption on goethite using hybrid surface complexation-machine learning model.

Water Research 2024 April 7
This study aimed to develop surface complexation modeling-machine learning (SCM-ML) hybrid model for chromate and arsenate adsorption on goethite. The feasibility of two SCM-ML hybrid modeling approaches was investigated. Firstly, we attempted to utilize ML algorithms and establish the parameter model, to link factors influencing the adsorption amount of oxyanions with optimized surface complexation constants. However, the results revealed the optimized chromate or arsenate surface complexation constants might fall into local extrema, making it unable to establish a reasonable mapping relationship between adsorption conditions and surface complexation constants by ML algorithms. In contrast, species-informed models were successfully obtained, by incorporating the surface species information calculated from the unoptimized SCM with the adsorption condition as input features. Compared with the optimized SCM, the species-informed model could make more accurate predictions on pH edges, isotherms, and kinetic data for various input conditions (for chromate: root mean square error (RMSE) on test set = 5.90 %; for arsenate: RMSE on test set = 4.84 %). Furthermore, the utilization of the interpretable formula based on Local Interpretable Model-Agnostic Explanations (LIME) enabled the species-informed model to provide surface species information like SCM. The species-informed SCM-ML hybrid modeling method proposed in this study has great practicality and application potential, and is expected to become a new paradigm in surface adsorption model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app