Add like
Add dislike
Add to saved papers

Vacancy Spectroscopy of Non-Abelian Kitaev Spin Liquids.

Spin vacancies in the non-Abelian Kitaev spin liquid are known to harbor Majorana zero modes, potentially enabling topological quantum computing at elevated temperatures. Here, we study the spectroscopic signatures of such Majorana zero modes in a scanning tunneling setup where a non-Abelian Kitaev spin liquid with a finite density of spin vacancies forms a tunneling barrier between a tip and a substrate. Our key result is a well-defined peak close to zero bias voltage in the derivative of the tunneling conductance whose voltage and intensity both increase with the density of vacancies. This "quasi-zero-voltage peak" is identified as the closest analog of the zero-voltage peak observed in topological superconductors that additionally reflects the fractionalized nature of spin-liquid-based Majorana zero modes. We further highlight a single-fermion Van Hove singularity at a higher voltage that reveals the energy scale of the emergent Majorana fermions in the Kitaev spin liquid. Our proposed signatures are within reach of current experiments on the candidate material α-RuCl_{3}.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app