Add like
Add dislike
Add to saved papers

Retinal Microcirculation Measurements in Response to Endurance Exercises Analysed by Adaptive Optics Retinal Camera.

Diagnostics 2024 March 29
This study aimed to precisely investigate the effects of intensive physical exercise on retinal microvascular regulation in healthy volunteers through adaptive optics retinal camera (AO) measurement. We included healthy volunteers (11 men and 14 women) aged 20.6 ± 0.9. The heart rate (HR) and systolic and diastolic blood pressures (SBP, DBP) were recorded before and after a submaximal physical exertion of continuously riding a training ergometer. The superior temporal retinal artery measurements were captured using the AO-rtx1TM (Imagine Eyes, Orsay, France) without pupil dilation. We compared measures of vessel diameter (VD), lumen diameter (LD), two walls (Wall 1, 2), wall-to-lumen ratio (WLR), and wall cross-sectional analysis (WCSA) before and immediately after the cessation of exercise. Cardiovascular parameter results: After exercise, SBP, DBP, and HR changed significantly from 130.2 ± 13.2 to 159.7 ± 15.6 mm Hg, 81.2 ± 6.3 to 77.1 ± 8.2 mm Hg, and 80.8 ± 16.1 to 175.0 ± 6.2 bpm, respectively ( p < 0.002). Retinal microcirculation analysis showed no significant decrease in LD, Wall 1 after exercise: from 96.0 ± 6.8 to 94.9 ± 6.7 ( p = 0.258), from 11.0 ± 1.5 to 10.4 ± 1.5 ( p = 0.107), respectively, and significant reduction in VD from 118.5 ± 8.3 to 115.9 ± 8.3 ( p = 0.047), Wall 2 from 11.5 ± 1.0 to 10.7 ± 1.3 ( p = 0.017), WLR from 0.234 ± 0.02 to 0.222 ± 0.010 ( p = 0.046), WCSA from 3802.8 ± 577.6 to 3512.3 ± 535.3 ( p = 0.016). The AO is a promising technique for investigating the effects of exercise on microcirculation, allowing for the tracking of changes throughout the observation. Intensive dynamic physical exertion increases blood pressure and heart rate and causes the vasoconstriction of small retinal arterioles due to the autoregulation mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app