Add like
Add dislike
Add to saved papers

A novel algorithm for maximum power point tracking using computer vision (CVMPPT).

The behavior of an illuminated solar module can be characterized by its power-voltage curve. Tracking the peak of this curve is essential to harvest the maximum power by the module. The position of the peak varies with temperature and irradiance and needs to be traced. Under partial shading conditions, the number of peaks increases and makes it more difficult to find the global maximum power point (MPP). Various methods are used for maximum power point tracking (MPPT) that are based on iterations. These methods are time-consuming and fail to work satisfactorily under rapidly changing environmental conditions. In this paper, a novel algorithm is proposed that for the first time, utilizes computer vision to find the global maximum power point. This algorithm, which is implemented in Matlab/Simulink, is free of voltage iterations and gives the real-time data for the maximum power point. The proposed algorithm increases the speed and the reliability of the MPP tracking via replacing analogue electronics calculations by digital means. The validity of the algorithm is experimentally verified.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app