Add like
Add dislike
Add to saved papers

A novel method to quantify breathing effort from respiratory mechanics and esophageal pressure.

Breathing effort is important to quantify to understand mechanisms underlying central and obstructive sleep apnea, respiratory-related arousals, and the timing and effectiveness of invasive or non-invasive mechanically assisted ventilation. Current quantitative methods to evaluate breathing effort rely on inspiratory esophageal or epiglottic pressure swings or changes in diaphragm electromyographic (EMG) activity, where units are problematic to interpret and compare between individuals and to measured ventilation. This paper derives a novel method to quantify breathing effort in units directly comparable to measured ventilation by applying respiratory mechanics first principles to convert continuous transpulmonary pressure measurements into "attempted" airflow expected to have arisen without upper airway obstruction. The method was evaluated using data from eleven subjects undergoing overnight polysomnography, including 6 obese patients with severe obstructive sleep apnea (OSA), including one who also had frequent central events, and 5 healthy-weight controls. Classic respiratory mechanics showed excellent fits of airflow and volume to transpulmonary pressures during wake periods of stable unobstructed breathing (mean ± SD r² = 0.94 ± 0.03), with significantly higher respiratory system resistance in patients compared to healthy controls (11.2 ± 3.3 vs 7.1 ± 1.9 cmH2 O·l-1 ·sec, P=0.032). Subsequent estimates of attempted airflow from transpulmonary pressure changes clearly highlighted periods of acute and prolonged upper airway obstruction, including within the first few breaths following sleep onset in patients. This novel technique provides unique quantitative insights into the complex and dynamically changing inter-relationships between breathing effort and achieved airflow during periods of obstructed breathing in sleep.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app