Add like
Add dislike
Add to saved papers

A minimalist cancer cell membrane-shielded biomimetic nanoparticle for nasopharyngeal carcinoma active-targeting therapy.

Nasopharyngeal carcinoma (NPC) is a common head and neck malignancy, which is characterized by high incidence and aggression with poor diagnosis and limited therapeutic opportunity. The innovative strategy for achieving precise NPC active-targeting drug delivery has emerged as a prominent focus in clinical research. Here, a minimalist cancer cell membrane (CCM) shielded biomimetic nanoparticle (NP) was designed for NPC active-targeting therapy. Chemotherapeutant model drug doxorubicin (DOX) was loaded in polyamidoamine (PAMAM) dendrimer. The PAMAM/DOX (PD) NP was further shielded by human CNE-2 NPC CCM. Characterization results verified that the biomimetic PAMAM/DOX@CCM (abbreviated as PDC) NPs had satisfactory physical properties with high DOX-loading and excellent stability. Cell experiments demonstrated that the CNE-2 membrane-cloaked PDC NPs presented powerful cellular uptake in the sourcing cells by homologous targeting and adhesive interaction. Further in vivo results confirmed that this biomimetic nanoplatform had extended circulation and remarkable tumor-targeting capability, and the PDC NPs effectively suppressed the progression of CNE-2 tumors by systemic administration. This CCM-shielded biomimetic NP displayed a minimalist paradigm nanoplatform for precise NPC therapy, and the strategy of CCM-shielded biomimetic drug delivery system (DDS) has great potential for extensive cancer active-targeting therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app