Journal Article
Review
Add like
Add dislike
Add to saved papers

Recombinant Amidases: Recent Insights and its Applications in the Production of Industrially Important Fine Chemicals.

The current research for the synthesis of industrially important fine chemicals is more inclined towards developing enzyme-based processes. The biotransformation reactions wherein microbial cells/enzymes are used, have become essential in making the process efficient, green, and economical. Amongst industrially important enzymes, amidase is one of the most versatile tools in biocatalysis and biotransformation reactions. It shows broad substrate specificity and sturdy functional characteristics because of its promiscuous nature. Further, advancement in the area led to the development of amidase recombinant systems, which are developed using biotechnology and enzyme engineering tools. Additionally, recombinant amidases may be instrumental in commercializing the synthesis of fine chemicals such as hydroxamic acids that have a significant pharmaceutical market. Hence, the present review focuses on highlighting and assimilating the tools and techniques used in developing recombinant systems followed by their applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app