Add like
Add dislike
Add to saved papers

Development of cell-laden photopolymerized constructs with bioactive amorphous calcium magnesium phosphate for bone tissue regeneration via 3D bioprinting.

The synthesis of ideal bioceramics to guide the fate of cells and subsequent bone regeneration within the chemical, biological, and physical microenvironment is a challenging long-term task. This study developed amorphous calcium magnesium phosphate (ACMP) bioceramics via a simple co-precipitation method. The role of Mg2+ in the formation of ACMP is investigated using physicochemical and biological characterization at different Ca/Mg molar ratio of the initial reaction solution. Additionally, ACMP bioceramics show superior cytocompatibility and improved osteogenic differentiation of co-cultured MC3T3-E1 cells. Regulation of the microenvironment with Mg2+ can promote early-stage bone regeneration. For this, bioprinting technology is employed to prepare ACMP-modified 3D porous structures. Our hypothesis is that the incorporation of ACMP into methacrylated gelatin (GelMA) bioink can trigger the osteogenic differentiation of encapsulated preosteoblast and stimulate bone regeneration. The cell-laden ACMP composite structures display stable printability and superior cell viability and cell proliferation. Also, constructs loading the appropriate amount of ACMP bioceramic showed significant osteogenic differentiation activity compared to the pure GelMA. We demonstrate that the dissolved Mg2+ cation microenvironment in ACMP-modified composite constructs plays an effective biochemical role, and can regulate cell fate. Our results predict that GelMA/ACMP bioink has significant potential in patient-specific bone tissue regeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app