Add like
Add dislike
Add to saved papers

Growth and Distribution of Bacteria in Contaminated Whole Blood and Derived Blood Components.

INTRODUCTION: Bacterial contamination of blood products presumably occurs mainly during blood collection, starting from low initial concentrations of 10-100 colony-forming units (CFUs) per bag. As little is known about bacterial growth behavior and distribution in stored whole blood (WB) and WB-derived blood products, this study aims to provide data on this subject.

METHODS: WB units were inoculated with transfusion-relevant bacterial species ( Acinetobacter baumannii, Bacillus cereus, Escherichia coli, Klebsiella pneumoniae, Listeria monocytogenes, Pseudomonas fluorescens, Serratia marcescens, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus dysgalactiae, Streptococcus pyogenes, Yersinia enterocolitica ; n = 12 for each species), stored for 22-24 h at room temperature, and then centrifuged for separation into plasma, red blood cells (RBCs), and buffy coats (BCs). The latter were pooled with 3 random donor BCs and one unit of PAS-E each to yield plasma-reduced platelet concentrates (PCs). Samples for bacterial colony counting were collected after WB storage and immediately after blood component production. Sterility testing in PCs ( n = 12 for each species) was performed by bacterial culture after 7 days of storage.

RESULTS: Bacterial growth in WB varied remarkably between donations and species. Streptococcus species produced the highest titers in WB, whereas Staphylococcus aureus , Staphylococcus epidermidis , Escherichia coli, and Pseudomonas fluorescens did not multiply. Centrifugation resulted in preferential accumulation of bacteria in BCs, with titers of up to 3.5 × 103 CFU/mL in BCs and up to ≤0.9 × 103 CFU/mL in BC-derived PCs. Overall, 72/144 PCs (50%) tested positive for bacteria after storage. Sterility test results were species-dependent, ranging from 12 of 12 PCs tested positive for Streptococcus pyogenes to 1 of 12 PCs positive for Escherichia coli . Bacterial contamination of RBC and plasma units was much less common and was associated with higher initial bacterial counts in the parent WB units.

CONCLUSIONS: Bacterial growth in WB is species-dependent and varies greatly between donations. Preferential accumulation of bacteria in BCs during manufacturing is a critical determinant of the contamination risk of BC-derived pooled PCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app