Add like
Add dislike
Add to saved papers

De-icing performance evolution with increasing hydrophobicity by regulating surface topography.

It is of great significance to grasp the role of surface topography in de-icing, which however remains unclear yet. Herein, four textured surfaces are developed by regulating surface topography while keeping surface chemistry and material constituents same. Specifically, nano-textures are maintained and micro-textures are gradually enlarged. The resultant ice adhesion strength is proportional to a topography parameter, i.e. areal fraction of the micro-textures, owing to the localized bonding strengthening, which is verified by ice detachment simulation using finite element method. Moreover, the decisive topography parameter is demonstrated to be determined by the interfacial strength distribution between ice and test surface. Such parameters vary from paper to paper due to different interfacial strength distributions corresponding to respective situations. Furthermore, since hydrophobic and de-icing performance may rely on different topography parameters, there is no certain relationship between hydrophobicity and de-icing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app