Add like
Add dislike
Add to saved papers

Modularization of Regional Electronic Structure over Defect-Rich CeO 2 Rods for Enhancing Photogenerated Charge Transfer and CO 2 Activation.

Nano Letters 2024 April 4
Oxygen vacancy (OV) engineering has been widely applied in different types of metal oxide-based photocatalytic reactions. Our study has shown that the redistributed OVs resulting from voids in CeO2 rods lead to significant differences in the band structure in space. The flat energy band within the highly crystallized bulk region hinders the recombination of photogenerated carrier pairs during the transfer process. The downward curved energy band in the surface region enhances the activation of the absorbents. Therefore, the localization of the band structure through crystal structure regionalization renders V-CeO2 capable of achieving efficient utilization of photogenerated carriers. Practically, the V-CeO2 rod shows a remarkable turnover number of 190.58 μmol g-1 h-1 in CO2 photoreduction, which is ∼9.4 times higher than that of D-CeO2 (20.46 μmol g-1 h-1 ). The designed modularization structure in our work is expected to provide important inspiration and guidance in coordinating the kinetic behavior of carriers in OV defect-rich photocatalysts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app