Add like
Add dislike
Add to saved papers

Macrophage-derived exosomes rescue the TNF-ɑ-suppressed osteo-/cementogenic differentiation of hPDLCs.

Oral Diseases 2024 April 3
OBJECTIVE: Inflammatory stimuli compromise the differentiation potency of human periodontal ligament cells (hPDLCs). Macrophage-derived exosomes (M-Exo) play a role in several aspects of cellular activity. This study investigated how M-Exo contributes to the osteo-/cementogenic differentiation of hPDLCs under inflammation and the mechanism involved.

METHODS: M-Exo was identified by transmission electron microscopy, western blotting (WB), and dynamic light scattering. The internalization of M-Exo by hPDLCs was observed. After M-Exo treatment, the osteo-/cementogenic markers were detected by RT-qPCR and WB, and alkaline phosphatase (ALP) activity by ALP staining. Tumor necrosis factor alpha (TNF-ɑ) was applied to simulate inflammation. The rescue effect of M-Exo on TNF-ɑ-suppressed differentiation was validated. The p38 MAPK pathway activity was tested and a specific inhibitor was applied to explore the mechanism.

RESULTS: M-Exo was successfully isolated, identified and internalized by hPDLCs. M-Exo enhanced the osteo-/cementogenic differentiation of hPDLCs, as indicated by upregulated osteo-/cementogenic markers and elevated ALP activity. Moreover, TNF-ɑ inhibited the differentiation capabilities of hPDLCs, on which M-Exo showed a rescue effect. M-Exo activated the p38 MAPK pathway and SB203580 attenuated its promotion effect.

CONCLUSION: This study showed that M-Exo ameliorated the TNF-ɑ-suppressed osteo-/cementogenic differentiation of hPDLCs partly through the p38 MAPK pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app