Add like
Add dislike
Add to saved papers

TRAF6-mediated ubiquitination of AKT in the nucleus is a critical event underlying the desensitization of G protein-coupled receptors.

BACKGROUND: Desensitization of G protein-coupled receptors (GPCRs) refers to the attenuation of receptor responsiveness by prolonged or intermittent exposure to agonists. The binding of β-arrestin to the cytoplasmic cavity of the phosphorylated receptor, which competes with the G protein, has been widely accepted as an extensive model for explaining GPCRs desensitization. However, studies on various GPCRs, including dopamine D2 -like receptors (D2 R, D3 R, D4 R), have suggested the existence of other desensitization mechanisms. The present study employed D2 R/D3 R variants with different desensitization properties and utilized loss-of-function approaches to uncover the mechanisms underlying GPCRs homologous desensitization, focusing on the signaling cascade that regulates the ubiquitination of AKT.

RESULTS: AKT undergoes K8/14 ubiquitination by TRAF6, which occurs in the nucleus and promotes its membrane recruitment, phosphorylation and activation under receptor desensitization conditions. The nuclear entry of TRAF6 relies on the presence of the importin complex. Src regulates the nuclear entry of TRAF6 by mediating the interaction between TRAF6 and importin β1. Ubiquitinated AKT translocates to the plasma membrane where it associates with Mdm2 to phosphorylate it at the S166 and S186 residues. Thereafter, phosphorylated Mdm2 is recruited to the nucleus, resulting in the deubiquitination of β-Arr2. The deubiquitinated β-Arr2 then forms a complex with Gβγ, which serves as a biomarker for GPCRs desensitization. Like in D3 R, ubiquitination of AKT is also involved in the desensitization of β2 adrenoceptors.

CONCLUSION: Our study proposed that the property of a receptor that causes a change in the subcellular localization of TRAF6 from the cytoplasm to the nucleus to mediate AKT ubiquitination could initiate the desensitization of GPCRs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app