Add like
Add dislike
Add to saved papers

Phylogenetic analyses reveal insights into interdomain horizontal gene transfer of microbial lipases.

Microbial lipases play a pivotal role in a wide range of biotechnological processes and in the human skin microbiome. However, their evolution remains poorly understood. Accessing the evolutionary process of lipases could contribute to future applications in health and biotechnology. We investigated genetic events associated with the evolutionary trajectory of the microbial family LIP lipases. Using phylogenetic analysis, we identified two distinct horizontal gene transfer (HGT) events from Bacteria to Fungi. Further analysis of human cutaneous mycobiome members such as the lipophilic Malassezia yeasts and CUG-Ser-1 clade (including Candida sp. and other microorganisms associated with cutaneous mycobiota) revealed recent evolutionary processes, with multiple gene duplication events. The Lid region of fungal lipases, crucial for substrate interaction, exhibits varying degrees of conservation among different groups. Our findings suggest the adaptability of the fungal LIP family in various genetic and metabolic contexts and its potential role in niche exploration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app