Add like
Add dislike
Add to saved papers

The efficacy of machine learning models in forecasting treatment failure in thoracolumbar burst fractures treated with short-segment posterior spinal fixation.

BACKGROUND: Although short-segment posterior spinal fixation (SSPSF) has shown promising clinical outcomes in thoracolumbar burst fractures, the treatment may be prone to a relatively high failure rate. This study aimed to assess the effectiveness of machine learning models (MLMs) in predicting factors associated with treatment failure in thoracolumbar burst fractures treated with SSPSF.

METHODS: A retrospective review of 332 consecutive patients with traumatic thoracolumbar burst fractures who underwent SSPSF at our institution between May 2016 and May 2023 was conducted. Patients were categorized into two groups based on treatment outcome (failure or non-failure). Potential risk factors for treatment failure were compared between the groups. Four MLMs, including random forest (RF), logistic regression (LR), support vector machine (SVM), and k-nearest neighborhood (k-NN), were employed to predict treatment failure. Additionally, LR and RF models were used to assess factors associated with treatment failure.

RESULTS: Of the 332 included patients, 61.4% were male (n = 204), and treatment failure was observed in 44 patients (13.3%). Logistic regression analysis identified Load Sharing Classification (LSC) score, lack of index level instrumentation, and interpedicular distance (IPD) as factors associated with treatment failure (P < 0.05). All models demonstrated satisfactory performance. RF exhibited the highest accuracy in predicting treatment failure (accuracy = 0.948), followed by SVM (0.933), k-NN (0.927), and LR (0.917). Moreover, the RF model outperformed other models in terms of sensitivity and specificity (sensitivity = 0.863, specificity = 0.959). The area under the curve (AUC) for RF, LR, SVM, and k-NN was 0.911, 0.823, 0.844, and 0.877, respectively.

CONCLUSIONS: This study demonstrated the utility of machine learning models in predicting treatment failure in thoracolumbar burst fractures treated with SSPSF. The findings support the potential of MLMs to predict treatment failure in this patient population, offering valuable prognostic information for early intervention and cost savings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app