Add like
Add dislike
Add to saved papers

Fluid-filled versus sensor-tipped pressure guidewires for FFR and P d /P a measurement; PW-COMPARE study.

BACKGROUND: Fluid-filled pressure guidewires are unaffected by the previously inevitable hydrostatic pressure gradient (HPG). This study aimed to compare simultaneous pressure measurements with fluid-filled and sensor-tipped pressure guidewires.

METHODS: Fifty patients underwent fractional flow reserve (FFR) and Pd /Pa measurement with a fluid-filled and a sensor-tipped pressure guidewire simultaneously. To assess maneuverability, patients were randomized with respect to which pressure guidewire was used to cross the lesion first. Lateral fluoroscopy was used to estimate height difference between catheter tip and distal wire position (and thus HPG). Agreement between pressure measurements was studied.

RESULTS: Measurements were performed in LM (4% (n = 2)), LAD (44% (n = 22)), LCX (26% (n = 13)), and RCA (26% (n = 13)). Simultaneous pressure measurements showed excellent agreement (mean FFR difference - 0.01 ± 0.03 (r = 0.959, p < 0.001), mean Pd /Pa difference - 0.01 ± 0.04 (r = 0.929, p < 0.001)). FFR was ≤0.80 in 42.6% (n = 20) with fluid-filled FFR measurements versus 46.8% (n = 22) by sensor-tipped FFR measurements. Mean height difference was 15 ± 34 mm, and strongly dependent on the coronary artery (LAD 45 ± 10 mm, LCX -23 ± 16 mm, RCA -13 ± 17 mm). There was a strong correlation between height difference and difference in pressure ratios between sensor-tipped and fluid-filled pressure guidewires (FFR r = -0.850, p < 0.001; Pd /Pa r = -0.641, p < 0.001). Largest FFR differences were present in the LAD (-0.04 ± 0.02). After HPG correction, mean difference between HPG-corrected sensor-tipped FFR and fluid-filled FFR was 0.00 ± 0.02, mean Pd /Pa difference was 0.01 ± 0.03.

CONCLUSIONS: This study shows excellent overall correlation between FFR and Pd /Pa measurements with both pressure guidewires. Differences measured with fluid-filled and sensor-tipped pressure guidewires are vessel-specific and attributable to hydrostatic pressure gradients (NCT04802681).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app