Add like
Add dislike
Add to saved papers

Lactoferrin as a therapeutic agent for attenuating hepatic stellate cell activation in thioacetamide-induced liver fibrosis.

Liver fibrosis is a chronic liver disease caused by prolonged liver injuries. Excessive accumulation of extracellular matrix replaces the damaged hepatocytes, leading to fibrous scar formation and fibrosis induction. Lactoferrin (LF) is a glycoprotein with a conserved, monomeric signal polypeptide chain, exhibiting diverse physiological functions, including antioxidant, anti-inflammatory, antibacterial, antifungal, antiviral, and antitumoral activities. Previous study has shown LF's protective role against chemically-induced liver fibrosis in rats. However, the mechanisms of LF in liver fibrosis are still unclear. In this study, we investigated LF's mechanisms in thioacetamide (TAA)-induced liver fibrosis in rats and TGF-β1-treated HSC-T6 cells. Using ultrasonic imaging, H&E, Masson's, and Sirius Red staining, we demonstrated LF's ability to improve liver tissue damage and fibrosis induced by TAA. LF reduced the levels of ALT, AST, and hydroxyproline in TAA-treated liver tissues, while increasing catalase levels. Additionally, LF treatment decreased mRNA expression of inflammatory factors such as Il-1β and Icam-1, as well as fibrogenic factors including α-Sma, Collagen I, and Ctgf in TAA-treated liver tissues. Furthermore, LF reduced TAA-induced ROS production and cell death in FL83B cells, and decreased α-SMA, Collagen I, and p-Smad2/3 productions in TGF-β1-treated HSC-T6 cells. Our study highlights LF's ability to ameliorate TAA-induced hepatocyte damage, oxidative stress, and liver fibrosis in rats, potentially through its inhibitory effect on HSC activation. These findings suggest LF's potential as a therapeutic agent for protecting against liver injuries and fibrosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app