Add like
Add dislike
Add to saved papers

The Dynamic Interaction between Oil Palm and Phytophthora palmivora in Bud Rot Disease: Insights from Transcriptomic Analysis and Network Modelling.

Bud Rot, caused by Phytophthora palmivora , is considered one of the main diseases affecting African oil palm ( Elaeis guineensis ). In this study, we investigated the in vitro molecular dynamics of the pathogen-host interaction by analyzing gene expression profiles from oil palm genotypes that were either susceptible or resistant to the disease. We observed distinct interactions of P. palmivora with resistant and susceptible oil palms through co-expression network analysis. When interacting with susceptible genotypes, P. palmivora exhibited upregulation of carbohydrate and sulfate transport genes. These genes demonstrated co-expression with apoplastic and cytoplasmic effectors, including cell wall degrading enzymes, elicitins, and RxLR motif effectors. The pathogen manipulated susceptible oil palm materials, exacerbating the response and compromising the phenylpropanoid pathway, ultimately leading to susceptibility. In contrast, resistant materials exhibited control over their response through putative Heat Shock Proteins (HSP) that maintained homeostasis between primary metabolism and biotic defense. Co-expressed genes related to flavonoids, WRKY transcripts, lectin-type receptors, and LRR receptors may play important roles in pathogen control. Overall, the study provides new knowledge of the molecular mechanisms underlying the interaction between E. guineensis and P. palmivora , which can contribute to controlling Bud Rot in oil palms and gives new insights into the interactions of P. palmivora with their hosts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app