Add like
Add dislike
Add to saved papers

Neutral Block Copolymer Assisted Gene delivery using Hydrodynamic Limb Vein Injection.

Three different amphiphilic block copolymer families were synthesized to investigate new opportunities to enhance gene delivery via Hydrodynamic Limb Vein (HLV) injections. First a polyoxazoline-based family containing mostly one poly(2-methyl-2-oxazoline) (PMeOx) block and a second block POx with an ethyl (EtOx), isopropyl (iPrOx) or phenyl substituent (PhOx) has been synthesized. Then an ABC poly(2-ethyl-2-oxazoline)-b-poly(2-n-propyl-2-oxazoline)-b-poly(2-methyl-2-oxazoline) triblock copolymer was synthesized, with a thermosensitive middle block. Finally, polyglycidol-b-polybutylenoxide-b-polyglycidol copolymers with various molar masses and amphiphilic balance were produced. The simple architecture of neutral amphiphilic triblock copolymer is not sufficient to obtain enhanced in vivo gene transfection. Double or triple amphiphilic neutral block copolymers are improving the in vivo transfection performances through HLV administration as far as a block having an LCST is incorporated in the vector. The molar mass of the copolymer does not seem to affect the vector performances in a significant manner. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app