Add like
Add dislike
Add to saved papers

Polyubiquitylated rice stripe virus NS3 translocates to the nucleus to promote cytosolic virus replication via miRNA-induced fibrillin 2 upregulation.

PLoS Pathogens 2024 March 21
Viruses are encapsidated mobile genetic elements that rely on host cells for replication. Several cytoplasmic RNA viruses synthesize proteins and/or RNAs that translocate to infected cell nuclei. However, the underlying mechanisms and role(s) of cytoplasmic-nuclear trafficking are unclear. We demonstrate that infection of small brown planthoppers with rice stripe virus (RSV), a negarnaviricot RNA virus, results in K63-linked polyubiquitylation of RSV's nonstructural protein 3 (NS3) at residue K127 by the RING ubiquitin ligase (E3) LsRING. In turn, ubiquitylation leads to NS3 trafficking from the cytoplasm to the nucleus, where NS3 regulates primary miRNA pri-miR-92 processing through manipulation of the microprocessor complex, resulting in accumulation of upregulated miRNA 1st-miR-92. We show that 1st-miR-92 regulates the expression of fibrillin 2, an extracellular matrix protein, thereby increasing RSV loads. Our results highlight the manipulation of intranuclear, cytoplasmic, and extracellular components by an RNA virus to promote its own replication in an insect vector.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app