Add like
Add dislike
Add to saved papers

The influence of obesity and fat distribution on ankle muscle coactivation during gait.

BACKGROUND: Excessive body weight is associated with gait alterations. In none of previous studies, body fat distribution has been considered as a factor that could change gait parameters and induce different neuromuscular adaptations.

OBJECTIVE: This multicenter, analytical, and cross-sectional study aimed to investigate the influence of the body mass distribution on gait parameters and ankle muscle coactivation in obese individuals.

METHODS: Three distinct groups were included in the study: a non-obese control group (CG, n = 15, average age = 32.8 ± 6.5 years, BMI = 21.4 ± 2.2 kg/m2), an obese-android group characterized by a Waist to Hip Ratio (WHR) greater than 1 (OAG, n = 15, age = 32.4 ± 3.9 years, BMI = 41.4 ± 3.9 kg/m2, WHR = 1.2 ± 0.2), and an obese-gynoid group with a WHR less than 1 (OGG, n = 15, age = 35.4 ± 4.1 years, BMI = 40.0 ± 5.7 kg/m2, WHR = 0.82 ± 0.3). All participants walked on an instrumented gait analysis treadmill at their self-selected walking speed for one minute. Spatiotemporal parameters, walking cycle phases, vertical ground reaction force (GRFv) and center of pressure (CoP) velocity were sampled from the treadmill software. Electromyography (EMG) activity of the gastrocnemius medialis (GM), the soleus (SOL) and tibialis anterior (TA) were collected during walking and used to calculate coactivation indexes (CI) between ankle plantar and dorsal flexors (GM/TA and SOL/TA) for the different walking cycle phases.

RESULTS: Compared to OAG, OGG walked with shorter and larger strides, lower CoP velocity and GRFv. During the single support phase, SOL/TA coactivation was higher in OAG compared to OGG (p < .05). During the propulsion phase, SOL/TA coactivation was higher in OGG compared to OAG (p < .05).

CONCLUSION: Gait parameters and ankle muscle coactivation in obese individuals seem to be strongly dependent on body mass distribution. From the biomechanical point of view, body mass distribution changes gait strategies in obese individuals inducing different neuromuscular adaptations during the single support and propulsion phases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app