Add like
Add dislike
Add to saved papers

Molecular imaging reveals the heterogeneous progression of tumor cells and tumor stroma: a practice of FDG PET and FAPI PET in diagnosing PSMA-negative bone metastases of progressive prostate cancer.

Tumors are often with complex and heterogeneous biological processes, such as glycometabolism and fibrosis, which are the main biochemical pathways that determine therapeutic effects. Specifically, this study aims to assess the diagnosing performance of 18 F-FDG and 68 Ga-FAPI-04 PET for different stages of progressive bone metastases with PSMA-negative pathology. Bone metastatic mouse model of prostate cancer was constructed via intra-bone injection of PSMA-negative prostate cancer PC3 cells. Cellular uptakes of 18 F-FDG and 68 Ga-FAPI-04 were separately performed on PC3, NIH-3T3 (FAP-positive) and a mixture. 68 Ga-PSMA-11, 18 F-FDG and 68 Ga-FAPI-04 PET/CT imaging were performed at 2, 4 weeks after tumor cell transplantation. Furthermore, PSMA and FAP expression in bone metastases were assessed by immunohistochemistry, and then compared with the imageological findings. On the cellular level, the independent tracer uptake on the basis of glycometabolism and fibrosis was observed. For animal imaging, 68 Ga-PSMA-11 imaging showed weak or absent tracer uptake in PSMA-negative bone metastatic lesions. In contrast, 68 Ga-FAPI-04 PET of bone metastases had a higher uptake and tumor-to-muscle (T/M) ratio than 18 F-FDG PET that was relative steady during the observation, but T/M ratio of fibrosis gradually decreased with increasing tumor growth, which ranged from 5.11 ± 1.26 at 2 weeks to 3.54 ± 0.23 at 4 weeks, revealing the delayed formation of tumor stroma in rapid proliferation. In addition, PET imaging results were corroborated by immunohistochemical assessment. In conclusion, molecular imaging approach revealed the heterogeneous progression of tumor cells and tumor stroma of bone metastasis of prostate cancer, and further confirming the necessity of multi-molecular imaging in cancer imaging.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app