Add like
Add dislike
Add to saved papers

Enlarged choroid plexus in relapsing-remitting multiple sclerosis may lead to brain structural changes through the glymphatic impairment.

OBJECTIVES: To investigate the potential link among choroid plexus (CP) volume, glymphatic clearance and brain structural change in relapsing-remitting multiple sclerosis (RRMS) patients.

MATERIALS AND METHODS: Sixty-five RRMS patients and 48 healthy controls (HC) underwent MRI examination. The diffusion tensor image analysis along the perivascular space (DTI-ALPS) was calculated to reflect glymphatic system function. The brain structure volume and DTI-ALPS index were compared between RRMS and HC. The mediating effect of the DTI-ALPS index between CP volume and brain structural changes was further investigated. The longitudinal changes of brain structure and DTI-ALPS index were compared in 20 RRMS patients.

RESULTS: Compared to HC, CP volume in RRMS was significantly increased (P < 0.001), and DTI-ALPS index was significantly decreased (P = 0.001). The volumes of white matter, thalamus, putamen and pallidum were significantly decreased in RRMS, and the volumes of lateral ventricle and third ventricle were increased. Mediation analysis showed DTI-ALPS index partially mediated the association between CP enlargement and deep gray matter (DGM) atrophy in RRMS, and between CP enlargement and ventricle enlargement. CP volume and DTI-ALPS index were also significantly correlated with Expanded Disability Status Scale (EDSS) (P = 0.006, P = 0.043). Notably, the variation of DTI_ALPS index during the follow-up period were significantly and negatively correlated with the variation of EDSS (P = 0.045).

CONCLUSION: Enlarged CP volume and decreased DTI_ALPS index may be closely related to DGM atrophy and ventricular enlargement in RRMS, and may be potential imaging markers of clinical disability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app