Journal Article
Review
Add like
Add dislike
Add to saved papers

Cardiovascular Magnetic Resonance Based Tissue Characterization in Patients with Hypertrophic Cardiomyopathy.

Hypertrophic cardiomyopathy (HCM) is a relatively common hereditable cardiomyopathy that affects between 1:200 to 1:500 of the general population. The role of cardiovascular magnetic resonance (CMR) imaging in the management of HCM has expanded over the past two decades to become a key informant of risk in this patient population, delivering unique insights into tissue health and its influence on future outcomes. Numerous mature CMR-based techniques are clinically available for the interrogation of tissue health in patients with HCM, inclusive of contrast and non-contrast methods. Late gadolinium enhancement (LGE) imaging remains a cornerstone technique for the identification and quantification of myocardial fibrosis with large cumulative evidence supporting value for the prediction of arrhythmic outcomes. T1 mapping delivers improved fidelity for fibrosis quantification through direct estimations of extracellular volume (ECV) fraction but also offers potential for non-contrast surrogate assessments of tissue health. Water-sensitive imaging, inclusive of T2-weighted dark-blood imaging and T2 mapping, have also shown preliminary potential for assisting in risk discrimination. Finally, emerging techniques, inclusive of innovative multi-parametric methods, are expanding the landscape of CMR to assist in the delivery of comprehensive tissue characterization towards the delivery of personalized HCM care. In this narrative review we summarize the contemporary landscape of CMR techniques aimed at characterizing tissue health in patients with HCM. The value of these respective techniques to identify patients at elevated risk of future cardiovascular outcomes is highlighted.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app