Add like
Add dislike
Add to saved papers

Self-Similar Growth of Bose Stars.

We analytically solve the problem of Bose star growth in the bath of gravitationally interacting particles. We find that after nucleation of this object, the bath is described by a self-similar solution of the kinetic equation. Together with the conservation laws, this fixes mass evolution of the Bose star. Our theory explains, in particular, the slowdown of the star growth at a certain "core-halo" mass, but also predicts formation of heavier and lighter objects in magistral dark matter models. The developed "adiabatic" approach to self-similarity may be of interest for kinetic theory in general.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app