Add like
Add dislike
Add to saved papers

RuBisCO activity assays: a simplified biochemical redox approach for in vitro quantification and an RNA sensor approach for in vivo monitoring.

BACKGROUND: Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is the most abundant soluble protein in nature. Extensive studies have been conducted for improving its activity in photosynthesis through approaches like protein engineering. Concurrently, multiple biochemical and radiolabeling assays have been developed for determining its activity. Although these existing assays yield reliable results, they require addition of multiple external components, rendering them less convenient and expensive. Therefore, in this study, we have developed two relatively cheaper, convenient, and easily reproducible assays for quantitative and qualitative estimation of RuBisCO activity.

RESULTS: We simplified a contemporary NADH based spectrophotometric RuBisCO assay by using cyanobacterial cell lysate as the source for Calvin cycle enzymes. We analyzed the influence of inorganic carbon substrates, CO2 and NaHCO3 , and varying protein concentrations on RuBisCO activity. Ribulose-1,5-bisphosphate (RuBP) consumption rates for the cultures grown under 5% CO2 were 5-7 times higher than the ones grown with 20 mM NaHCO3 , at different protein concentrations. The difference could be due to the impaired activity of carbonic anhydrase in the cell lysate, which is required for the conversion of HCO3 - to CO2 . The highest RuBisCO activity of 2.13 nmol of NAD+ / µg of Chl-a/ min was observed with 50 µg of protein and 5% CO2 . Additionally, we developed a novel RNA-sensor based fluorescence assay that is based on the principle of tracking the kinetics of ATP hydrolysis to ADP during the conversion of 3-phosphoglycerate (3-PG) to 1,3-bisphosphoglycerate (1,3-BPG) in the Calvin cycle. Under in vitro conditions, the fluorometric assay exhibited  ~ 3.4-fold slower reaction rate (0.37 min-1 ) than the biochemical assay when using 5% CO2 . We also confirmed the in vivo application of this assay, where increase in the fluorescence was observed with the recombinant strain of Synechocystis sp. PCC 6803 (SSL142) expressing the ADP-specific RNA sensor, compared to the WT. In addition, SSL142 exhibited three-fold higher fluorescence when supplemented with 20 mM NaHCO3 as compared to the cells that were grown without NaHCO3 supplementation.

CONCLUSIONS: Overall, we have developed a simplified biochemical assay for monitoring RuBisCO activity and demonstrated that it can provide reliable results as compared to the prior literature. Furthermore, the biochemical assay using 5% CO2 (100% relative activity) provided faster RuBP consumption rate compared to the biochemical assay utilizing 20 mM NaHCO3 (30.70% relative activity) and the in vitro fluorometric assay using 5% CO2 (29.64% relative activity). Therefore, the absorbance-based biochemical assay using 5% CO2 or higher would be suitable for in vitro quantification of the RuBisCO activity. On the other hand, the RNA-sensor based in vivo fluorometric assay can be applied for qualitative analysis and be used for high-throughput screening of RuBisCO variants. As RuBisCO is an enzyme shared amongst all the photoautotrophs, the assays developed in this study can easily be extended for analyzing the RuBisCO activities even in microalgae and higher plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app