Add like
Add dislike
Add to saved papers

Hetero-Interface Engineering on 9.0 wt% CoO x -Doped CeO 2 Nanorods as Electromagnetic Wave Absorber and Integrated into Multifunctional Aerogel.

Small 2024 March 15
Ceria (CeO2 ) becomes a promising candidate as electromagnetic wave absorbing materials (EWAMs) for their abundant natural source, rich oxygen vacancy, charge conversion, and electron transfer abilities. However, it remains challenging to regulate its nanoscale and atom-scale composition to optimize the absorbing performance and develop high-performance commercial devices. Herein, a facile method to large-scale synthesis CeO2 @Co-x% (x = 5, 7, 9, 11, 13) series EWAMs with diverse amounts of decorated CoOx is presented. By modulating the ratio of doped CoOx , a rational hetero-interface is created in CeO2 @Co-9% to enhance natural and exchange resonances, improving magnetic loss capability and optimizing impedance matching. Doped CoOx promotes the charge accumulation, interfacial polarization, and multiple scattering of the CeO2 for strengthening the EW absorption and attenuation, which display superb minimum reflective loss (RLmin ) of -74.4 dB with a wide effective absorbing bandwidth (EAB) of 5.26 GHz. Furthermore, a dual crosslinking strategy is employed to fabricate CeO2 @Co-9% into an aerogel device with integrated lightweight, heat insulation, compression resistance, and fame-retardant functions. This work presents an excellent example of large-scale fast synthesis of high-performance CeO2 -based EWAMs and multiplication 3D devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app