Add like
Add dislike
Add to saved papers

Novel Bioresorbable Drug-Eluting Mesh Scaffold for Therapy of Muscle Injury.

A novel bioresorbable drug-eluting polycaprolactone (PCL) mesh scaffold was developed, utilizing a solvent-cast additive manufacturing technique, to promote therapy of muscle injury. The degradation rate and mechanical properties strength of the PCL mesh were characterized after immersion in a buffer solution for different times. The in vitro release characteristics of vancomycin, ceftazidime, and lidocaine from the prepared mesh were evaluated using a high-performance liquid chromatography (HPLC) assay. In addition, the in vivo efficacy of PCL meshes for the repair of muscle injury was investigated on a rat model with histological examinations. It was found that the additively manufactured PCL meshes degraded by 13% after submission in buffered solution for four months. All PCL meshes with different pore sizes exhibited greater strength than rat muscle and survived through 10,000 cyclic loadings. Furthermore, the meshes could offer a sustained release of antibiotics and analgesics for more than 3 days in vitro. The results of this study suggest that drug-loaded PCL mesh exhibits superior ability to pure PCL mesh in terms of effectively promoting muscle repair in rat models. The histological assay also showed adequate biocompatibility of the resorbable meshes. The additively manufactured biodegradable drug-eluting meshes may be adopted in the future in humans for the therapy of muscle injuries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app