Add like
Add dislike
Add to saved papers

A Multivariate 2D Metal-Organic Framework with Open Metal Sites for Catalytic CO 2 Cycloaddition and Cyanosilylation Reactions.

Inorganic Chemistry 2024 March 14
This work reports the synthesis of a dual functional 2D framework, {[Zn2 (4-tpom)2 (oxdz)2 ]·4H2 O}n ( 1 ), at room temperature, where a bent dicarboxylate, oxdz2- (4,4'-(1,3,4-oxadiazole-2,5-diyl)dibenzoate), and a neutral flexible N-donor linker, 4-tpom (tetrakis(4-pyridyloxymethylene)methane), are utilized. Its single-crystal X-ray analysis indicated a 2-fold interpenetrated 2D framework having tetracoordinated Zn(II) centers and dangling pyridyl groups. Its further characterization was carried out with elemental microanalysis, FTIR spectroscopy, TG analysis, and powder X-ray diffraction. The tetracoordinated Zn(II) centers as active Lewis acidic sites and the N atoms of 4-tpom as Lewis basic sites in 1 are explored for its functioning as a heterogeneous catalyst in two important reactions, (i) cycloaddition of CO2 with various epoxides and (ii) cyanosilylation reaction under solvent-free conditions. We could successfully show the cycloaddition of styrene oxide with CO2 (99% conversion) under balloon pressure with low catalyst (0.2-0.3 mol %) and cocatalyst (0.5-0.75 mol %) loadings, which is otherwise difficult to achieve. It was observed that all the substrates (aromatic and aliphatic), irrespective of their sizes, showed conversion percentage >99%. In the cyanosilylation reaction, a conversion of 96% was obtained with 1.5 mol % of 1 at room temperature for 12 h. This framework emerged as an excellent recyclable catalyst for both the reactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app