Add like
Add dislike
Add to saved papers

Co-exposure to 55 endocrine-disrupting chemicals linking diminished sperm quality: Mixture effect, and the role of seminal plasma docosapentaenoic acid.

Isolated effects of single endocrine-disrupting chemicals (EDCs) on male reproductive health have been studied extensively, but their mixture effect remains unelucidated. Previous research has suggested that consuming diet enriched in omega-3 polyunsaturated fatty acids (PUFA) might be beneficial for reproductive health, whether omega-3 PUFA could moderate the effect of EDCs mixture on semen quality remains to be explored. In this study of 155 male recruited from a reproductive health center in China, we used targeted-exposomics to simultaneously measure 55 EDCs in the urine for exposure burden. Regression analyses were restricted to highly detected EDCs (≥55%, n = 34), and those with consistently elevated risk were further screened and brought into mixture effect models (Bisphenol A, ethyl paraben, methyl paraben [MeP], benzophenone-1 [BP1], benzophenone-3, mono(3-carboxypropyl) phthalate [MCPP]). Bayesian Kernel Machine Regression (BKMR) and quantile-based g-computation (QGC) models demonstrated that co-exposure to top-ranked EDCs was related to reduced sperm total (β = -0.18, 95%CI: -0.29 - -0.07, P = 0.002) and progressive motility (β = -0.27, 95%CI: -0.43 - -0.10, P = 0.002), but not to lower semen volume. BP1, MeP and MCPP were identified as the main effect driver for deteriorated sperm motion parameters using mixture model analyses. Seminal plasma fatty acid profiling showed that high omega-3 PUFA status, notably elevated docosapentaenoic acid (DPA, C22:5n-3) status, moderated the association between MCPP and sperm motion parameters (total motility: β = 0.26, 95%CI: 0.01 - -0.51, Pinteraction  = 0.047; progressive motility: β = 0.64, 95%CI: 0.23 - 1.05, Pinteraction  = 0.003). Co-exposure to a range of EDCs is mainly associated with deteriorated sperm quality, but to a lesser extent on sperm quantity, high seminal plasma DPA status might be protective against the effect. Our work emphasizes the importance of exposomic approach to assess chemical exposures and highlighted a new possible intervention target for mitigating the potential adverse effect of EDCs on semen quality.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app