Add like
Add dislike
Add to saved papers

Phosphorus speciation in manure and fertilizer impacted Mid-Atlantic coastal plain soils.

Historical applications of manures and fertilizers at rates exceeding crop P removal in the Mid-Atlantic region (United States) have resulted in decades of increased water quality degradation from P losses in agricultural runoff. As such, many growers in this region face restrictions on future P applications. An improved understanding of the fate, transformations, and availability of P is needed to manage P-enriched soils. We paired chemical extractions (i.e., Mehlich-3, water extractable P, and chemical fractionation) with nondestructive methods (i.e., x-ray absorption near edge structure [XANES] spectroscopy and x-ray fluorescence [XRF]) to investigate P dynamics in eight P-enriched Mid-Atlantic soils with various management histories. Chemical fractionation and XRF data were used to support XANES linear combination fits, allowing for identification of various Al, Ca, and Fe phosphates and P sorbed phases in soils amended with fertilizer, poultry litter, or dairy manure. Management history and P speciation were used to make qualitative comparisons between the eight legacy P soils; we also speculate about how P speciation may affect future management of these soils with and without additional P applications. With continued P applications, we expect an increase in semicrystalline Al and Fe-P, P sorbed to Al (hydro)oxides, and insoluble Ca-P species in these soils for all P sources. Under drawdown scenarios, we expect plant P uptake first from semicrystalline Al and Fe phosphates followed by P sorbed phases. Our results can help guide management decisions on coastal plain soils with a history of P application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app