Add like
Add dislike
Add to saved papers

Fractals and Chaos in the Hemodynamics of Intracranial Aneurysms.

Computing the emerging flow in blood vessel sections by means of computational fluid dynamics is an often applied practice in hemodynamics research. One particular area for such investigations is related to the cerebral aneurysms, since their formation, pathogenesis, and the risk of a potential rupture may be flow-related. We present a study on the behavior of small advected particles in cerebral vessel sections in the presence of aneurysmal malformations. These malformations cause strong flow disturbances driving the system toward chaotic behavior. Within these flows, the particle trajectories can form a fractal structure, the properties of which are measurable by quantitative techniques. The measurable quantities are well established chaotic properties, such as the Lyapunov exponent, escape rate, and information dimension. Based on these findings, we propose that chaotic flow within blood vessels in the vicinity of the aneurysm might be relevant for the pathogenesis and development of this malformation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app