Add like
Add dislike
Add to saved papers

Aqueous ozone exposure inhibits sporulation in the Cyclospora cayetanensis surrogate Eimeria acervulina.

Ozone is a potent disinfecting agent used to treat potable water and wastewater, effectively clearing protozoa such as Giardia and Cryptosporidium spp. It is unclear whether ozone treatment of water or fresh produce can reduce the spread of the emerging parasite Cyclospora cayetanensis, which causes cyclosporiasis in humans. Obtaining viable C. cayetanensis oocysts to evaluate inactivation methods is challenging because we lack the means to propagate them in vitro, because of delays in case reporting, and because health departments typically add inactivating fixatives to clinical specimens. Research in various surrogate organisms has sought to bolster understanding of the biology of C. cayetanensis. Among these surrogates is the poultry parasite Eimeria acervulina, a closely related and easily cultured parasite of economic significance. We used this surrogate to evaluate the consequences of ozone treatment, using sporulation state as an indicator of infectious potential. Treating with ozonated water acidified with citric acid reduced sporulation ability in a dose-dependent manner; treatment with up to 4.93 mg/L initial concentration of ozone resulted in a 93% inactivation of sporulation by 7 days post treatment. This developmental arrest was accompanied by transcriptional changes in genes involved in regulating the response to reactive oxygen species (ROS) in a time course that is consistent with the production of oxygen free radicals. This study shows that ozone is highly effective in preventing sporulation of E. acervulina, a model coccidian used as a surrogate for Cyclospora. Furthermore, ozone exposure induced molecular responses to general oxidative stress, documented with several well-characterized antioxidant enzymes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app