Add like
Add dislike
Add to saved papers

In silico investigation of potential phytoconstituents against ligand- and voltage-gated ion channels as antiepileptic agents.

3 Biotech 2024 April
UNLABELLED: The most promising anticonvulsant phytocompounds were explored in this work using docking, molecular dynamic (MD) simulation, and Molecular Mechanics-Poisson-Boltzmann Surface Area (MM-PBSA) approaches. A total of 70 phytochemicals were screened against α-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid (AMPA), N -methyl-d-aspartate (NMDA), voltage-gated sodium ion channels (VGSC), and carbonic anhydrase enzyme II (CA II) receptors, and the docking results were compared to the reference drug phenytoin. Amentoflavone displayed the highest affinity for AMPA and VGSC receptors, with docking scores of - 10.4 and - 10.1 kcal/mol, respectively. Oliganthin H-NMDA and epigallocatechin-3-gallate-CA II complexes showed docking scores of - 10.9 and - 6.9 kcal/mol, respectively. All four complexes depicted a high dock score compared to the phenytoin complex at the binding site of the corresponding proteins. The MD simulation investigated the stabilities and favorable conformation of apoproteins and ligand/reference-bound complexes. The results revealed that proteins AMPA, VGSC, and CA II were more efficiently stabilized by lead phytochemicals than phenytoin binding. Additionally, principal component analysis and MM-PBSA results suggested that these lead phytocompounds have good compactness and strong binding free energy. Further, physicochemical and pharmacokinetic studies revealed that these final lead phytochemicals would be suitable for oral intake, have sufficient intestinal permeability, and have the ability to cross the blood-brain barrier (BBB). Comprehensively, this study predicted amentoflavone as the best lead phytochemical out of the 70 anticonvulsant phytocompounds that can be used to treat epilepsy.

SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-024-03948-1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app