Add like
Add dislike
Add to saved papers

Mechanical Stress Via Muscle Contractile Exercise Suppresses Atrophic Alterations of Bone-microstructure in Immobilized Rat Femurs.

OBJECTIVES: This study aimed to determine whether mechanical stress via muscle contractile exercise with belt electrode-skeletal muscle electrical stimulation (B-SES) device effectively prevents immobilization-induced bone atrophy.

METHODS: Wistar rats were randomly divided into the control (CON) group, immobilization (IM) group (immobilized treatment only), HES and LES groups (immobilized treatment and high or low-intensity electrical muscular stimulation through B-SES device). Bilateral femurs were used for X-ray micro-CT and biomechanical tests.

RESULTS: The maximum load value was significantly lower in the IM and HES groups than in the CON group and significantly higher in the LES group than in the IM group. The maximum crushing load was significantly lower in the IM, HES, and LES groups than in the CON group, and significantly higher in the HES and LES groups than that in the IM group. In micro-CT, the mechanical stress by B-SES device did not affect degenerative microstructural changes in the cortical bone, but prevented those changes in the cancellous bone.

CONCLUSIONS: Applying mechanical stress via B-SES device suppressed the loss of cancellous bone density and degenerative microstructural changes caused by immobilization, which in turn suppressed the reduction of bone strength. From these findings, muscle contractile exercise may be effective in preventing immobilization-induced bone atrophy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app