Add like
Add dislike
Add to saved papers

DNA Methylation Signatures in Paired Placenta and Umbilical Cord Samples: Relationship with Maternal Pregestational Body Mass Index and Offspring Metabolic Outcomes.

Biomedicines 2024 January 28
An epigenomic approach was used to study the impact of maternal pregestational body mass index (BMI) on the placenta and umbilical cord methylomes and their potential effect on the offspring's metabolic phenotype. DNA methylome was assessed in 24 paired placenta and umbilical cord samples. The differentially methylated CpGs associated with maternal pregestational BMI were identified and the metabolic pathways and the potentially related diseases affected by their annotated genes were determined. Two top differentially methylated CpGs were studied in 90 additional samples and the relationship with the offspring's metabolic phenotype was determined. The results showed that maternal pregestational BMI is associated with the methylation of genes involved in endocrine and developmental pathways with potential effects on type 2 diabetes and obesity. The methylation and expression of HADHA and SLC2A8 genes in placenta and umbilical cord were related to several metabolic parameters in the offspring at 6 years (weight SDS, height SDS, BMI SDS, Δ BW-BMI SDS, FM SDS, waist, SBP, TG, HOMA-IR, perirenal fat; all p < 0.05). Our data suggest that epigenetic analysis in placenta and umbilical cord may be useful for identifying individual vulnerability to later metabolic diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app