Add like
Add dislike
Add to saved papers

ReeGAN: MRI image edge-preserving synthesis based on GANs trained with misaligned data.

As a crucial medical examination technique, different modalities of magnetic resonance imaging (MRI) complement each other, offering multi-angle and multi-dimensional insights into the body's internal information. Therefore, research on MRI cross-modality conversion is of great significance, and many innovative techniques have been explored. However, most methods are trained on well-aligned data, and the impact of misaligned data has not received sufficient attention. Additionally, many methods focus on transforming the entire image and ignore crucial edge information. To address these challenges, we propose a generative adversarial network based on multi-feature fusion, which effectively preserves edge information while training on noisy data. Notably, we consider images with limited range random transformations as noisy labels and use an additional small auxiliary registration network to help the generator adapt to the noise distribution. Moreover, we inject auxiliary edge information to improve the quality of synthesized target modality images. Our goal is to find the best solution for cross-modality conversion. Comprehensive experiments and ablation studies demonstrate the effectiveness of the proposed method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app