Add like
Add dislike
Add to saved papers

Dynamics of cell wall-binding proteins at a single molecule level: B. subtilis autolysins show different kinds of motion.

The bacterial cell wall is a meshwork of crosslinked peptidoglycan strands, with a thickness of up to 50 nm in Firmicutes. Little is known about how proteins move through the cell wall to find sites of enzymatic activity. Cell wall synthesis for cell elongation involves the integration of new peptidoglycan strands by integral membrane proteins, as well as the degradation of existing strands by so-called autolysins, soluble proteins that are secreted through the cell membrane. Autolysins comprise different classes of proteases and glucanases and mostly contain cell wall binding domains in addition to their catalytic domain. We have studied dynamics of Bacillus subtilis autolysins LytC, a major endopeptidase required for lateral cell wall growth, and LytF, a peptidase acting at the newly formed division site in order to achieve separation of daughter cells. We show that both proteins, fused to moxVenus are present as three distinct populations of different diffusion constants. The fastest population is compatible with free diffusion in a crowded liquid environment, i.e. similar to that of cytosolic enzymes, likely reflecting autolysins diffusing through the periplasm. The medium mobile fraction can be explained by constrained motion through a polymeric substance, indicating mobility of autolysins through the wall similar to that of DNA-binding proteins within the nucleoid. The slow-mobile fraction are most likely autolysins bound to their specific substrate sites. We show that LytF is more static during exponential phase, while LytC appears to be more active during the transition to stationary phase. Both autolysins became more static in backgrounds lacking redundant other autolysins, suggesting stochastic competition for binding sites. On the other hand, lack of inhibitor IseA or autolysin CwlS lead to an altered preference for polar localization of LytF within the cell wall, revealing that inhibitors and autolysins also affect each other's pattern of localization, in addition to their activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app