Journal Article
Review
Add like
Add dislike
Add to saved papers

The Role of p53 in Regulating Chronic Inflammation and PANoptosis in Diabetic Wounds.

Aging and Disease 2024 Februrary 20
Diabetic wounds represent a formidable challenge in the clinical management of diabetes mellitus, markedly diminishing the patient's quality of life. These wounds arise from a multifaceted etiology, with the pathophysiological underpinnings remaining elusive and complex. Diabetes precipitates neuropathies and vasculopathies in the lower extremities, culminating in infections, ulcerations, and extensive tissue damage. The hallmarks of non-healing diabetic wounds include senescence, persistent inflammation, heightened apoptosis, and attenuated cellular proliferation. The TP53 gene, a pivotal tumor suppressor frequently silenced in human malignancies, orchestrates cellular proliferation, senescence, DNA repair, and apoptosis. While p53 is integral in cell cycle regulation, its role in initial tissue repair appears to be deleterious. In typical cutaneous wounds, p53 levels transiently dip, swiftly reverting to baseline. Yet in diabetic wounds, protracted p53 activation impedes healing via two distinct pathways: i) activating the p53-p21-Retinoblastoma (RB) axis, which halts the cell cycle, and ii) upregulating the cGAS-STING and nuclear factor-kappaB (NF-κB) cascades, instigating ferroptosis and pyroptosis. Furthermore, p53 intersects with various metabolic pathways, including glycolysis, gluconeogenesis, oxidative phosphorylation, and autophagy. In diabetic wounds, p53 may drive metabolic reprogramming, thus potentially derailing macrophage polarization. This review synthesizes case studies investigating the therapeutic modulation of p53 in diabetic wounds care. In summation, p53 modulates chronic inflammation and cellular aging within diabetic cutaneous wounds and is implicated in a novel cell death modality, encompassing ferroptosis and pyroptosis, which hinders the reparative process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app