Add like
Add dislike
Add to saved papers

Biological Properties of 3D-Printed Zirconia Implants with p-Cell Structures.

Journal of Dental Research 2024 Februrary 20
Research on 3-dimensional (3D) printed porous zirconia-based dental implants is still in its infancy. This study aimed to evaluate the biological responses of novel zirconia implants with p-cell structures fabricated by 3D printing. The solid zirconia samples exhibited comparable density, 3-point flexural strength, and accelerated aging properties compared to specimens prepared previously by conventional methods. Cell-based experiments showed that the p-cell structure promoted cell proliferation, adhesion, and osteogenesis-related protein expression. Mechanical tests showed that both p-cell and control implants could withstand a torque of 35 Ncm without breaking. The mean maximum breaking loads of p-cell and control implants were 1,222.429 ± 115.591 N and 1,903.857 ± 250.673 N, respectively, which were much higher than the human physiological chewing force and human mean maximum occlusal force. An animal experiment showed that the bone trabeculae around the implants were significantly thicker, more numerous, and denser in the p-cell group than in the control group. This work could provide promising guidance for further exploring 3D printing techniques for porous zirconia bionic implants in dentistry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app