Add like
Add dislike
Add to saved papers

Arachidonic acid inhibit granulosa cell function by affecting metabolic function of liver in brown adipose transplantation rats.

Journal of Ovarian Research 2024 Februrary 20
BACKGROUND: Polycystic ovary syndrome (PCOS) is a gynecological endocrine disease and could be considered a metabolic disease because it is often accompanied by obesity and insulin resistance. Brown adipose tissue (BAT) transplantation has been shown to be effective in treating PCOS rats.

RESULTS: The study demonstrated that BAT successfully recovered the reproductive and metabolic phenotype of PCOS rats. The disorder estrous cycle, abnormal hyperglycemia and the expression of liver factors were improved. Differentially expressed metabolites were analyzed, among them, arachidonic acid may play a role in inhibiting cell proliferation, enhancing oxidative stress reaction, promoting estrogen expression, and reducing progesterone level in KGN cells.

CONCLUSION: Our findings suggest that BAT transplantation may be a therapeutic strategy for PCOS by changing the expression of some cytokines and metabolites. Differentially expressed metabolites might be crucially important for the pathogenesis of PCOS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app