Journal Article
Review
Add like
Add dislike
Add to saved papers

Alterations of Gastrointestinal Microbe Composition in Various Human Diseases and Its Significance in the Early Diagnosis of Diseases.

Curēus 2024 January
A 100 trillion bacteria, viruses, fungi, and archaea make up the human gut microbe. It has co-evolved with its human host and carries out essential tasks that improve general health. The relationship between gastrointestinal microbes and human health has been a growing field of interest and research in recent times. The gastrointestinal microbes are connected by complex networks and connections, and the host has given birth to the gut-microbe-brain axis, which shows the crucial effect that this circumstance could have on the health and diseases of the brain and spinal cord (or the central nervous system [CNS]). The microbe and the CNS interact bi-directionally via autonomic, neuroendocrine, gastrointestinal, and immune system pathways. The gut microbe has been connected to a range of gastrointestinal and extra-gastrointestinal diseases. The recent investigation supports the suspicion that the gut-microbe-brain axis could play a role in neuropsychiatric disorders including depression, dementia, post-traumatic stress disorder, anxiousness, bipolar disorder, schizophrenia, and obsessive-compulsive disorder, alongside chronic host illnesses such as obesity, diabetes, and inflammation. Studies point to gut microorganisms as possible biomarkers for a wide range of mental health issues. Changes in the gut microbe may be a crucial factor in the onset and advancement of non-alcoholic fatty liver damage. Gut microbes have been seen to influence microglia's response to the CNS's regional signals and thus to pain and inflammation. Data suggest that altering the gut microbe in those with chronic pain may be a successful method for reducing pain. Numerous investigations have documented alterations in the gut microbes made in Alzheimer patients and schizophrenic patients. The risk of breast cancer can be reduced by restoring gut microbe homeostasis and reducing systemic estrogen levels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app