Add like
Add dislike
Add to saved papers

Tyrosinase-based nanobiosensor for environmental monitoring of hormones in river water.

Environmental Research 2024 Februrary 16
This study explores the application of a tyrosinase cantilever nanobiosensor for detecting 17β-estradiol and estrone in typical water systems. The physical-chemical parameters of water were evaluated within the Tigre River micro-basin in Erechim, RS, to determine water potability for urban populations. Water clarity, conductivity, and pH levels were essential markers, adhering to recognized standards for water quality and human consumption. The cantilever nanobiosensor demonstrated strong sensitivity and a broad linear range, with a limit of detection (<0.00051 ppb) surpassing other enzymatic biosensors and covering a range of 0.0001-100 ppb. The real water sample quality investigated in relation to contamination with 17β-estradiol and estrone by nanobiosensor showed values below the LOD for both compounds. Recovery studies demonstrated the reliability of the nanobiosensor. Selectivity tests indicated minimal interference from structurally similar substances. This study validates the nanobiosensor's potential for environmental monitoring and hormone detection, aligning with standard practices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app