Add like
Add dislike
Add to saved papers

Charge Puddles Driven Complex Crossover of Magnetoresistance in Non-Topological Sulfur Doped Antimony Selenide Nanowires.

Small 2024 Februrary 17
A race to achieve a crossover from positive to negative magnetoresistance is intense in the field of nanostructured materials to reduce the size of memory devices. Here, the unusual complex magnetoresistance in nonmagnetic sulfur-doped Sb2 Se3  nanowires is demonstrated. Intentionally, sulfur is doped in such a way to nearly achieve the charge neutrality point that is evident from switching of carrier type from p-type to n-type at 13 K as inferred from the low-temperature thermoelectric power measurements. A change from 3D variable range hopping (VRH) to power law transport with α = 0.18  in resistivity measurement signifies a Luttinger liquid transport with weak links through the nanowires. Interestingly, high magnetic field induced negative magnetoresistance (NMR) occurring in hole dominated temperature regimes can only be explained by invoking the concept of charge puddles. Spot energy dispersive spectroscopy (EDS), magnetic force microscopy (MFM) measurements, Tmott  and Regel plot indicate an enhanced disorder in these sulfurized nanowires that are found to be the precursor for the formation of these charge puddles. Tunability of conducting states in these nanowires is investigated in the light of interplay of carrier type, magnetic field, temperature, and intricate intra-inter wire transport that makes this nanowires potential for large scale spintronic devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app