Add like
Add dislike
Add to saved papers

METTL3/ MALAT1 /ELAVL1 Axis Promotes Tumor Growth in Ovarian Cancer.

BACKGROUND: Studies increasingly recognize the role of N6-methyladenosine ( m6A ) modification in cancer occurrence and development. METTL3 is a core catalytic subunit of m6A-modified methyltransferases complex, but its regulatory mechanism in ovarian cancer (OC) is not clear.

METHODS: In this study, GEPIA 2.0 database was applied for expression analysis, survival analysis and correlation analysis for OC. Additionally, in vitro and in vivo assays were conducted to explore regulatory mechanisms of METTL3 in OC.

RESULTS: We found that METTL3 and MALAT1 were significantly overexpressed in OC tissues and cells compared to normal ovarian tissues and cells. The proliferation rate of OC cells was reduced significantly after knocking down the expression of METTL3 or MALAT1 . Subsequently, MALAT1 as oncogene was found to interact with METTL3 and was upregulated in OC tissues and cells. Silencing MALAT1 inhibited OC cell proliferation. Further studies indicated that METTL3 enhanced the stability of MALAT1 by promoting the m6A modification of MALAT1 and that ELAVL1 as a downstream binding protein significantly up-regulated MALAT1 expression.

CONCLUSION: In conclusion, METTL3 was a carcinogenic molecule that promoted the occurrence of OC. The potential mechanism of the carcinogenic effect of METTL3 was realized by enhancing the m6A modification of MALAT1 mRNA through RNA binding protein ELAVL1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app